DRACHTEN, the Netherlands — At the Philips Electronics factory on the coast of China, hundreds of workers use their hands and specialized tools to assemble electric shavers. That is the old way. þþþAt a sister factory here in the Dutch countryside, 128 robot arms do the same work with yoga-like flexibility. Video cameras guide them through feats well beyond the capability of the most dexterous human. þþOne robot arm endlessly forms three perfect bends in two connector wires and slips them into holes almost too small for the eye to see. The arms work so fast that they must be enclosed in glass cages to prevent the people supervising them from being injured. And they do it all without a coffee break — three shifts a day, 365 days a year. þþAll told, the factory here has several dozen workers per shift, about a tenth as many as the plant in the Chinese city of Zhuhai. þþThis is the future. A new wave of robots, far more adept than those now commonly used by automakers and other heavy manufacturers, are replacing workers around the world in both manufacturing and distribution. Factories like the one here in the Netherlands are a striking counterpoint to those used by Apple and other consumer electronics giants, which employ hundreds of thousands of low-skilled workers. þþ“With these machines, we can make any consumer device in the world,” said Binne Visser, an electrical engineer who manages the Philips assembly line in Drachten. þþMany industry executives and technology experts say Philips’s approach is gaining ground on Apple’s. Even as Foxconn, Apple’s iPhone manufacturer, continues to build new plants and hire thousands of additional workers to make smartphones, it plans to install more than a million robots within a few years to supplement its work force in China. þþFoxconn has not disclosed how many workers will be displaced or when. But its chairman, Terry Gou, has publicly endorsed a growing use of robots. Speaking of his more than one million employees worldwide, he said in January, according to the official Xinhua news agency: “As human beings are also animals, to manage one million animals gives me a headache.” þþThe falling costs and growing sophistication of robots have touched off a renewed debate among economists and technologists over how quickly jobs will be lost. This year, Erik Brynjolfsson and Andrew McAfee, economists at the Massachusetts Institute of Technology, made the case for a rapid transformation. “The pace and scale of this encroachment into human skills is relatively recent and has profound economic implications,” they wrote in their book, “Race Against the Machine.”þþ In their minds, the advent of low-cost automation foretells changes on the scale of the revolution in agricultural technology over the last century, when farming employment in the United States fell from 40 percent of the work force to about 2 percent today. The analogy is not only to the industrialization of agriculture but also to the electrification of manufacturing in the past century, Mr. McAfee argues. þþ“At what point does the chain saw replace Paul Bunyan?” asked Mike Dennison, an executive at Flextronics, a manufacturer of consumer electronics products that is based in Silicon Valley and is increasingly automating assembly work. “There’s always a price point, and we’re very close to that point.” þþBut Bran Ferren, a veteran roboticist and industrial product designer at Applied Minds in Glendale, Calif., argues that there are still steep obstacles that have made the dream of the universal assembly robot elusive. “I had an early naïveté about universal robots that could just do anything,” he said. “You have to have people around anyway. And people are pretty good at figuring out, how do I wiggle the radiator in or slip the hose on? And these things are still hard for robots to do.” þþBeyond the technical challenges lies resistance from unionized workers and communities worried about jobs. The ascension of robots may mean fewer jobs are created in this country, even though rising labor and transportation costs in Asia and fears of intellectual property theft are now bringing some work back to the West. þþTake the cavernous solar-panel factory run by Flextronics in Milpitas, south of San Francisco. A large banner proudly proclaims “Bringing Jobs & Manufacturing Back to California!” (Right now China makes a large share of the solar panels used in this country and is automating its own industry.) þþYet in the state-of-the-art plant, where the assembly line runs 24 hours a day, seven days a week, there are robots everywhere and few human workers. All of the heavy lifting and almost all of the precise work is done by robots that string together solar cells and seal them under glass. The human workers do things like trimming excess material, threading wires and screwing a handful of fasteners into a simple frame for each panel. þþþSuch advances in manufacturing are also beginning to transform other sectors that employ millions of workers around the world. One is distribution, where robots that zoom at the speed of the world’s fastest sprinters can store, retrieve and pack goods for shipment far more efficiently than people. Robots could soon replace workers at companies like C & S Wholesale Grocers, the nation’s largest grocery distributor, which has already deployed robot technology. þþþRapid improvement in vision and touch technologies is putting a wide array of manual jobs within the abilities of robots. For example, Boeing’s wide-body commercial jets are now riveted automatically by giant machines that move rapidly and precisely over the skin of the planes. Even with these machines, the company said it struggles to find enough workers to make its new 787 aircraft. Rather, the machines offer significant increases in precision and are safer for workers. þþAnd at Earthbound Farms in California, four newly installed robot arms with customized suction cups swiftly place clamshell containers of organic lettuce into shipping boxes. The robots move far faster than the people they replaced. Each robot replaces two to five workers at Earthbound, according to John Dulchinos, an engineer who is the chief executive at Adept Technology, a robot maker based in Pleasanton, Calif., that developed Earthbound’s system. þþRobot manufacturers in the United States say that in many applications, robots are already more cost-effective than humans. þþAt an automation trade show last year in Chicago, Ron Potter, the director of robotics technology at an Atlanta consulting firm called Factory Automation Systems, offered attendees a spreadsheet to calculate how quickly robots would pay for themselves. þþIn one example, a robotic manufacturing system initially cost $250,000 and replaced two machine operators, each earning $50,000 a year. Over the 15-year life of the system, the machines yielded $3.5 million in labor and productivity savings. þþThe Obama administration says this technological shift presents a historic opportunity for the nation to stay competitive. “The only way we are going to maintain manufacturing in the U.S. is if we have higher productivity,” said Tom Kalil, deputy director of the White House Office of Science and Technology Policy. þþGovernment officials and industry executives argue that even if factories are automated, they still are a valuable source of jobs. If the United States does not compete for advanced manufacturing in industries like consumer electronics, it could lose product engineering and design as well. Moreover, robotics executives argue that even though blue-collar jobs will be lost, more efficient manufacturing will create skilled jobs in designing, operating and servicing the assembly lines, as well as significant numbers of other kinds of jobs in the communities where factories are. þþAnd robot makers point out that their industry itself creates jobs. A report commissioned by the International Federation of Robotics last year found that 150,000 people are already employed by robotics manufacturers worldwide in engineering and assembly jobs. þþBut American and European dominance in the next generation of manufacturing is far from certain. þþ“What I see is that the Chinese are going to apply robots too,” said Frans van Houten, Philips’s chief executive. “The window of opportunity to bring manufacturing back is before that happens.” þþA Faster Assembly Lineþþ Royal Philips Electronics began making the first electric shavers in 1939 and set up the factory here in Drachten in 1950. But Mr. Visser, the engineer who manages the assembly, takes pride in the sophistication of the latest shavers. They sell for as much as $350 and, he says, are more complex to make than smartphones. þþThe assembly line here is made up of dozens of glass cages housing robots made by Adept Technology that snake around the factory floor for more than 100 yards. Video cameras atop the cages guide the robot arms almost unerringly to pick up the parts they assemble. The arms bend wires with millimetric accuracy, set toothpick-thin spindles in tiny holes, grab miniature plastic gears and set them in housings, and snap pieces of plastic into place. þþThe next generation of robots for manufacturing will be more flexible and easier to train. þþWitness the factory of Tesla Motors, which recently began manufacturing the Tesla S, a luxury sedan, in Fremont, Calif., on the edge of Silicon Valley. þ
Source: NY Times